Disconnect Between Hadley Cell and Subtropical Jet Variability and Response to Increased CO$_2$

Molly Menzel1, Darryn Waugh1,2, Kevin Grise3

October 22, 2019

1Johns Hopkins University, 2University of New South Wales, 3University of Virginia
Subtropical Jet and Hadley Cell Relationship

\[\bar{u} = \Omega a \frac{(\sin \varphi)^2}{\cos \varphi} \]

\[\frac{\partial u}{\partial z} \propto \frac{\partial T}{\partial y} \]
Subtropical Jet and Hadley Cell Relationship

By our current understanding of atmospheric general circulation, the subtropical jet’s location should shift with the Hadley cell edge...

... the reanalyses and models do not support this.
-Waugh et al. 2018
-Solomon et al. 2016
-Davis and Birner 2017
Subtropical Jet and Hadley Cell Relationship

By our current understanding of atmospheric general circulation, the subtropical jet’s location should shift with the Hadley cell edge...

... the reanalyses and models do not support this.
- Waugh et al. 2018
- Solomon et al. 2016
- Davis and Birner 2017

why is this?
Subtropical Jet and Hadley Cell Relationship

1. What is the natural, interannual relationship between the HC and STJ?

2. How do the STJ and HC respond to $4x\text{CO}_2$ forcing?

3. What are the physical processes that dictate HC and STJ behavior?
Metrics
Metrics

Hadley Cell

“PSI500”

\[\phi_{HC} = \phi(\psi_{500\ hPa} = 0) \]

\[\psi_{HC} = \max(\psi_{500\ hPa}) \]
Metrics

Hadley Cell

“PSI500”

\[\varphi_{HC} = \varphi (\psi_{500 \, hPa} = 0) \]

\[\psi_{HC} = \max (\psi_{500 \, hPa}) \]

Eddy-Driven Jet (EDJ)

\[\varphi_{EDJ} = \varphi (\max (u_{850 \, hPa})) \]

Menzel et al. 2019
Metrics

Hadley Cell

“PSI500”

\[\varphi_{HC} = \varphi(\psi_{500\,hPa} = 0) \]
\[\psi_{HC} = \max(\psi_{500\,hPa}) \]

Eddy-Driven Jet (EDJ)

\[\varphi_{EDJ} = \varphi(\max(u_{850\,hPa})) \]

Subtropical Jet (STJ)

\[\varphi_{STJ} = \varphi(\max(\Delta u)) \]
\[u_{STJ} = \Delta u(\varphi_{STJ}) \]
\[\Delta u = u_{100-400\,hPa} - u_{850\,hPa} \]
CMIP5 Data

Coupled Model Intercomparison Project (Phase 5)

Output from coupled simulations

\textit{piControl}

Control with pre-industrial levels of CO2
CMIP5 Data

Coupled Model Intercomparison Project (Phase 5)

Output from coupled simulations

\textit{piControl}

Control with pre-industrial levels of CO2

\textit{abrupt4xCO2}

Abrupt quadrupling of CO2, held fixed
CMIP5 Data

Coupled Model Intercomparison Project (Phase 5)

Output from coupled simulations

piControl

Control with pre-industrial levels of CO2

abrupt4xCO2

Abrupt quadrupling of CO2, held fixed
CMIP5: Interannual

HC
- Expands, weakens

EDJ
- Shifts poleward, strengthens

STJ
- Shifts poleward, weakens

\[
\sum_t u(\phi HC > 2\sigma) \quad - \quad \sum_t u(\phi HC < 2\sigma)
\]

Menzel et al. 2019
CMIP5: Interannual

HC
- Expands, weakens

EDJ
- Shifts poleward, strengthens

STJ
- Shifts poleward, weakens

narrow tropical cooling

Expanded HC
- contracted HC

\[\sum_t u(\phiHC > 2\sigma) \]

\[- \sum_t u(\phiHC < 2\sigma) \]

Menzel et al. 2019
CMIP5: Interannual

<table>
<thead>
<tr>
<th></th>
<th>Southern Hemisphere</th>
<th></th>
<th>Northern Hemisphere</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANN</td>
<td>DJF</td>
<td>MAM</td>
<td>JJA</td>
</tr>
<tr>
<td>ϕ_{HC}</td>
<td>0.07</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.12</td>
</tr>
<tr>
<td>ϕ_{STJ}</td>
<td>(0.23)</td>
<td>(0.3)</td>
<td>(0.22)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>ϕ_{HC}</td>
<td>-0.19</td>
<td>-0.34</td>
<td>-0.14</td>
<td>-0.25*</td>
</tr>
<tr>
<td>maxSTJ</td>
<td>(0.16)</td>
<td>(0.26)</td>
<td>(0.16)</td>
<td>(0.13)</td>
</tr>
</tbody>
</table>

Menzel et al. 2019
CMIP5: Interannual

Southern Hemisphere

<table>
<thead>
<tr>
<th></th>
<th>ANN</th>
<th>DJF</th>
<th>MAM</th>
<th>JJA</th>
<th>SON</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_{HC}</td>
<td>0.07</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.12</td>
<td>-0.03</td>
</tr>
<tr>
<td>(0.23)</td>
<td>(0.3)</td>
<td>(0.22)</td>
<td>(0.15)</td>
<td>(0.22)</td>
<td></td>
</tr>
<tr>
<td>ϕ_{STJ}</td>
<td>-0.19</td>
<td>-0.34</td>
<td>-0.14</td>
<td>-0.25*</td>
<td>-0.1</td>
</tr>
<tr>
<td>(0.16)</td>
<td>(0.26)</td>
<td>(0.16)</td>
<td>(0.13)</td>
<td>(0.17)</td>
<td></td>
</tr>
</tbody>
</table>

Northern Hemisphere

<table>
<thead>
<tr>
<th></th>
<th>ANN</th>
<th>DJF</th>
<th>MAM</th>
<th>JJA</th>
<th>SON</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_{HC}</td>
<td>0.15</td>
<td>0.02</td>
<td>0.29*</td>
<td>0.2</td>
<td>-0.08</td>
</tr>
<tr>
<td>(0.18)</td>
<td>(0.12)</td>
<td>(0.16)</td>
<td>(0.17)</td>
<td>(0.09)</td>
<td></td>
</tr>
<tr>
<td>ϕ_{maxSTJ}</td>
<td>-0.39*</td>
<td>-0.3*</td>
<td>-0.52*</td>
<td>-0.29*</td>
<td>-0.15</td>
</tr>
<tr>
<td>(0.14)</td>
<td>(0.13)</td>
<td>(0.13)</td>
<td>(0.18)</td>
<td>(0.15)</td>
<td></td>
</tr>
</tbody>
</table>

Natural Variability

- **HC Location**: More poleward HC, weaker STJ
- **STJ Strength**: More poleward HC, weaker STJ

Menzel et al. 2019
CMIP5: Response

HC
- Expands, weakens

EDJ
- Shifts poleward, strengthens

STJ
- Shifts poleward, strengthens

Menzel et al. 2019
CMIP5: Response

HC
- Expands, weakens

EDJ
- Shifts poleward, strengthens

STJ
- Shifts poleward, strengthens

broad warming
CMIP5: CO$_2$ Response

<table>
<thead>
<tr>
<th>HC Location</th>
<th>STJ Strength</th>
<th>Natural Variability</th>
<th>Response to 4xCO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[]</td>
<td>+</td>
</tr>
</tbody>
</table>

More poleward HC, weaker STJ
More poleward HC, stronger STJ
Warming Width
Warming Width: CMIP5

Similar patterns shown in
- Lu et al. 2008
- Sun et al. 2013
- Tandon et al. 2013

Menzel et al. 2019
Warming Width

- Lu et al. 2008
- Sun et al. 2013
- Tandon et al. 2013

Narrow tropical warming (ENSO)

more narrow HC
Warming Width

- Lu et al. 2008
- Sun et al. 2013
- Tandon et al. 2013

Narrow tropical warming (ENSO)

Broad warming (global forcing)

more narrow HC

wider HC

Lu et al. 2008
Warming Width

- Lu et al. 2008
- Sun et al. 2013
- Tandon et al. 2013

Narrow tropical warming (ENSO)

Broad warming (global forcing)

more narrow HC

stronger STJ

wider HC
Warming Metrics

ΔTemperature $[{ }^\circ \text{C}]$
Warming Metrics

Warming Strength

\[\Delta T_{\text{max}} = \text{max}(\Delta T_{30S-30N}) \]

Warming Width

\[\Delta \phi_T = \Delta \phi_{10\% \Delta T_{\text{max}}} \]

![Diagram](image-url)
Warming Width: Response

CMIP5

HC EDJ STJ

ΔφT

Poleward Shift [°]

Δ [m s⁻¹, 10¹⁰ kg s⁻¹]

0 20 40 60 80
0 20 40 60 80
Warming Width: Response

CMIP5

Narrow tropical warming:
HC contracts, STJ strengthens
Warming Width: Response

CMIP5

Narrow tropical warming:
HC contracts, STJ strengthens

Broad global warming:
HC expands, STJ strengthens
Warming Width: Response

How consistent is this response?

Comparing with idealized atmospheric models:

- GFDL dry dynamical core
 Temperature perturbation as in Sun et al. 2013

- GFDL dry core with convection parameter
 Data from Tandon et al. 2013

- Aquaplanet with specified SSTs
 Data from Watt-Meyer and Frierson 2019
Warming Width: Response

Dry Core (with convection)

Tandon et al. (2013)

Aquaplanet

Watt-Meyer & Frierson (2019)

CMIP5

Idealized Complex

Δ Strength [$\text{m s}^{-1}, 10^{10} \text{kg s}^{-1}$]

$\Delta \phi_T$

Δ Poleward Shift [°]

$\Delta \phi_T$
Conclusions
Key Takeaways

1. The interannual relationship between HC edge and STJ strength is the opposite sign as the response to increased atmospheric CO$_2$
Key Takeaways

1. The interannual relationship between HC edge and STJ strength is the opposite sign as the response to increased atmospheric CO$_2$

2. The STJ always strengthens given a warming while the HC’s movement is dependent on the width of warming

<table>
<thead>
<tr>
<th>ϕ_{HC} maxSTJ</th>
<th>Southern Hemisphere</th>
<th>Northern Hemisphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>DJF</td>
<td>MAM</td>
</tr>
<tr>
<td>-0.19 (0.16)</td>
<td>-0.34 (0.26)</td>
<td>-0.14 (0.16)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response to 4xCO$_2$</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_{HC} Poleward shift</td>
<td>7</td>
</tr>
<tr>
<td>u_{STJ} strengthening</td>
<td>40</td>
</tr>
</tbody>
</table>
Future Work

What are the physical processes that dictate HC and STJ behavior?

MODEL: Aquaplanet Simulations (prescribed SSTs)

1. How are the STJ and HC sensitive to meridional temperature gradients?
 1st Set of Runs: Tropical warming with various widths
 \((5°, 15°, 25°, 35°, 45°)\)
Future Work

What are the physical processes that dictate HC and STJ behavior?

MODEL: Aquaplanet Simulations (prescribed SSTs)

1. How are the STJ and HC sensitive to meridional temperature gradients?
 1st Set of Runs: Tropical warming with various widths
 \((5^\circ, 15^\circ, 25^\circ, 35^\circ, 45^\circ)\)

2. How are the STJ and HC sensitive to changes in midlatitude eddies?
 2nd Set of Runs: Zonally symmetric tropical warming
 (no waves)
 3rd Set of Runs: Polar cooling
 \((60^\circ-90^\circ)\)
Future Work

What are the physical processes that dictate HC and STJ behavior?

MODEL: Aquaplanet Simulations (prescribed SSTs)

1. How are the STJ and HC sensitive to meridional temperature gradients?
 Analysis: Evaluate response as a function of warming width

2. How are the STJ and HC sensitive to changes in midlatitude eddies?
 Analysis: decomposition of momentum budget

\[
\frac{\partial u}{\partial t} = (f + \bar{\zeta}) \bar{v} - \frac{1}{a \cos^2 \phi} \frac{\partial}{\partial \phi} (\bar{u'} \bar{v'} \cos^2 \phi)
\]
Future Work

What are the physical processes that dictate HC and STJ behavior?

MODEL: Aquaplanet Simulations (prescribed SSTs)

1. How are the STJ and HC sensitive to meridional temperature gradients?
 Analysis: Evaluate response as a function of warming width

2. How are the STJ and HC sensitive to changes in midlatitude eddies?
 Analysis: decomposition of momentum budget

\[\frac{\partial u}{\partial t} = (f + \bar{\zeta}) \bar{v} - \frac{1}{a \cos^2 \phi} \frac{\partial}{\partial \phi} (\bar{u}'\bar{v}' \cos^2 \phi) \]
Extra Slides
CMIP5: Interannual Correlations

<table>
<thead>
<tr>
<th></th>
<th>Southern Hemisphere</th>
<th></th>
<th>Northern Hemisphere</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANN</td>
<td>DJF</td>
<td>MAM</td>
<td>JJA</td>
</tr>
<tr>
<td>(\phi_{HC})</td>
<td>0.07</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.12</td>
</tr>
<tr>
<td>(\phi_{STJ})</td>
<td>-0.19</td>
<td>-0.34</td>
<td>-0.14</td>
<td>-0.25*</td>
</tr>
<tr>
<td>maxHC</td>
<td>0.26</td>
<td>0.06</td>
<td>0.26*</td>
<td>0.18</td>
</tr>
<tr>
<td>maxSTJ</td>
<td>0.19</td>
<td>0.12</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>(\phi_{STJ})</td>
<td>-0.07</td>
<td>0.01</td>
<td>-0.11</td>
<td>-0.04</td>
</tr>
<tr>
<td>maxHC</td>
<td>-0.35*</td>
<td>-0.08</td>
<td>-0.21</td>
<td>-0.33*</td>
</tr>
<tr>
<td>maxSTJ</td>
<td>(0.15)</td>
<td>(0.17)</td>
<td>(0.15)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>(\phi_{HC})</td>
<td>-0.4</td>
<td>0</td>
<td>-0.31</td>
<td>-0.23*</td>
</tr>
<tr>
<td>maxHC</td>
<td>(0.11)</td>
<td>(0.12)</td>
<td>(0.16)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>(\phi_{HC})</td>
<td>0.52*</td>
<td>0.72*</td>
<td>0.46*</td>
<td>0.24</td>
</tr>
<tr>
<td>(\phi_{EDJ})</td>
<td>(0.14)</td>
<td>(0.06)</td>
<td>(0.14)</td>
<td>(0.17)</td>
</tr>
</tbody>
</table>

Menzel et al. 2019
CMIP5: CO\textsubscript{2} Response

Time series of metrics’ response to 4xCO\textsubscript{2}

<table>
<thead>
<tr>
<th>Shift/Change</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ\textsubscript{HC}</td>
<td>poleward</td>
</tr>
<tr>
<td>φ\textsubscript{STJ}</td>
<td>slight poleward</td>
</tr>
<tr>
<td>u\textsubscript{STJ}</td>
<td>strengthening</td>
</tr>
<tr>
<td>ψ\textsubscript{HC}</td>
<td>slight weakening</td>
</tr>
</tbody>
</table>
CMIP5: CO$_2$ Response

<table>
<thead>
<tr>
<th>Shift/Change</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_{HC}</td>
<td>poleward</td>
</tr>
<tr>
<td>$\varphi(u'v')$</td>
<td>poleward</td>
</tr>
</tbody>
</table>

HC edge:
- latitude of max eddy momentum flux $\varphi(u'v')$

Menzel et al. 2019

Poleward Shift [°]

Years

Menzel et al. 2019
CMIP5: CO₂ Response

HC edge:
- latitude of max eddy momentum flux \(\phi(u'v') \)

STJ strength:
- max meridional temperature gradient \(\partial T / \partial y \)

<table>
<thead>
<tr>
<th>Shift/Change</th>
<th>(\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi HC)</td>
<td>poleward</td>
</tr>
<tr>
<td>(\phi(u'v'))</td>
<td>poleward</td>
</tr>
<tr>
<td>(uSTJ)</td>
<td>strengthening</td>
</tr>
<tr>
<td>(\partial T / \partial y)</td>
<td>strengthening</td>
</tr>
</tbody>
</table>

Menzel et al. 2019
CMIP5: CO$_2$ Response
CMIP5: Interannual

HC:
- Expands (0.9°)
- Weakens (0.5x10^{10} \text{ kg s}^{-1})

EDJ:
- Shifts poleward (2°)
- Strengthens (0.8 m s^{-1})

STJ
- Shifts poleward (0.3°)
- Weakens (0.9 m s^{-1})

Menzel et al. 2019
CMIP5: CO₂ Response

HC:
- Expands (1.7°)
- Weakens (0.4x10¹⁰ kg s⁻¹)

EDJ:
- Shifts poleward (2.9°)
- Strengthens (1.6 m s⁻¹)

STJ
- Shifts poleward (0.4°)
- Strengthens (4.4 m s⁻¹)
CMIP5: Interannual Correlations

Southern Hemisphere

<table>
<thead>
<tr>
<th>Metric</th>
<th>ANN</th>
<th>DJF</th>
<th>MAM</th>
<th>JJA</th>
<th>SON</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_{EDJ}</td>
<td>-0.02 (0.24)</td>
<td>-0.18 (0.37)</td>
<td>0.08 (0.26)</td>
<td>-0.09 (0.08)</td>
<td>-0.11 (0.2)</td>
</tr>
<tr>
<td>ϕ_{STJ}</td>
<td>0.01 (0.16)</td>
<td>-0.39 (0.35)</td>
<td>0.03 (0.16)</td>
<td>0.09 (0.15)</td>
<td>0.17 (0.15)</td>
</tr>
<tr>
<td>maxEDJ</td>
<td>0.08 (0.15)</td>
<td>0.04 (0.29)</td>
<td>0.03 (0.12)</td>
<td>0.2 (0.13)</td>
<td>0.01 (0.17)</td>
</tr>
<tr>
<td>ϕ_{STJ}</td>
<td>-0.11 (0.14)</td>
<td>-0.25 (0.13)</td>
<td>-0.08 (0.12)</td>
<td>-0.21 (0.16)</td>
<td>-0.12 (0.2)</td>
</tr>
</tbody>
</table>

Northern Hemisphere

<table>
<thead>
<tr>
<th>Metric</th>
<th>ANN</th>
<th>DJF</th>
<th>MAM</th>
<th>JJA</th>
<th>SON</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_{EDJ}</td>
<td>0</td>
<td>-0.01 (0.15)</td>
<td>0.04 (0.13)</td>
<td>0.31 (0.27)</td>
<td>-0.17 (0.11)</td>
</tr>
<tr>
<td>maxSTJ</td>
<td>-0.38* (0.14)</td>
<td>-0.4* (0.12)</td>
<td>-0.31 (0.17)</td>
<td>-0.21 (0.27)</td>
<td>-0.32* (0.13)</td>
</tr>
<tr>
<td>maxEDJ</td>
<td>0.17 (0.19)</td>
<td>0.27* (0.12)</td>
<td>0.12 (0.17)</td>
<td>0.31* (0.14)</td>
<td>0.19 (0.15)</td>
</tr>
<tr>
<td>maxSTJ</td>
<td>-0.28* (0.25)</td>
<td>-0.2 (0.21)</td>
<td>-0.08 (0.19)</td>
<td>-0.06 (0.2)</td>
<td>-0.21* (0.11)</td>
</tr>
</tbody>
</table>
CMIP5: CO$_2$ Response

Response to 4xCO$_2$

- $\Delta \phi_{STJ}$
 - NH: $R = 0.41$
 - SH: $R = 0.5$

- $\Delta \phi_{HC}$
 - NH: $R = 0.22$
 - SH: $R = 0.16$

- Δ_{maxSTJ}
 - NH: $R = 0.04$
 - SH: $R = 0.69$

- Δ_{maxHC}
CMIP5: CO$_2$ Response

- Upper graph: CO$_2$ concentration in ppm, constant at approximately 400 ppm from 0 to 150 years.
- Lower graph: Change in mean sea surface temperature ($\Delta\langle T_s \rangle$) in °C, showing a gradual increase from 2 to 8 °C over the same time period.
Dry Dynamical Core

GFLD Spectral Core

Equilibrium Temperature (Held and Suarez 1994)

\[T_{eq} = \max \left\{ 200, \left[315 - \delta_y (\sin \phi)^2 + T' - \delta_z \log \left(\frac{p}{p_0} \right) (\cos \phi)^2 \right] \left(\frac{p}{p_0} \right)^\kappa \right\} \]
Dry Dynamical Core

GFLD Spectral Core

Equilibrium Temperature (Held and Suarez 1994)

\[T_{eq} = \max \left\{ 200, \left[315 - \delta_y (\sin \phi)^2 + T' - \delta_z \log \left(\frac{p}{p_0} \right) (\cos \phi)^2 \right] \left(\frac{p}{p_0} \right)^\kappa \right\} \]

Tropical Warming (Sun et al. 2013)

\[T' = \delta_y \left\{ [A + (\sin \phi)^{1.25} - (\sin \phi)^2] \left[0.5 \left(1 - \tanh \left(\frac{\phi - \phi_0}{\delta \phi} \right) \right) \right] \right\} \]

<table>
<thead>
<tr>
<th>Narrow</th>
<th>Broad</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_0 = 10^\circ)</td>
<td>(\phi_0 = 10^\circ)</td>
</tr>
</tbody>
</table>
Warming Width

Narrow Forcing
HC: Contracts (3.1°), strengthens (3.9(10^{10}) kg s^{-1})
EDJ: Shifts equatorward (4.8°)
STJ: Strengthens (4.5 m s^{-1})
Warming Width

Narrow Forcing
HC: Contracts (3.1°), strengthens (3.9 \times 10^{10} \text{ kg s}^{-1})
EDJ: Shifts equatorward (4.8°)
STJ: Strengthens (4.5 \text{ m s}^{-1})

Broad Forcing
HC: Slight expansion (1.1°)
EDJ: Shifts poleward (1.7°)
STJ: Strengthens (3.9 \text{ m s}^{-1})
Warming Width

Narrow Forcing
HC: Contracts, strengthens
EDJ: Shifts equatorward
STJ: Strengthens

Broad Forcing
HC: Slight expansion
EDJ: Shifts poleward
STJ: Strengthens
Key Takeaways

1. **CMIP5 analysis shows the STJ latitude does not co-vary interannually with the Hadley Cell HC edge but the STJ strength does moderately**

<table>
<thead>
<tr>
<th></th>
<th>Southern Hemisphere</th>
<th>Northern Hemisphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>eHC maxSTJ</td>
<td>ANN -0.19, DJF -0.34, MAM -0.14, JJA -0.25*, SON -0.1</td>
<td>ANN -0.39*, DJF -0.3*, MAM -0.52*, JJA -0.29*, SON -0.15</td>
</tr>
</tbody>
</table>

2. **The interannual relationship between HC edge and STJ strength is the opposite sign as the response to increased atmospheric CO₂**

3. **The differences in the HC-STJ relationship are related to the differing sensitivities of the HC and STJ to shifts in eddy momentum fluxes**

Future Work

What are the underlying physical processes that dictate the behavior of the STJ and HC?
Future Work

What are the underlying physical processes that dictate the behavior of the STJ and HC?

MODEL: Aquaplanet Simulations
- Warming of various widths
- Polar cooling
- Disable eddy parameterizations

<table>
<thead>
<tr>
<th>Run</th>
<th>Δ<T_s></th>
<th>Δφ_T</th>
<th>Eddy permitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5K</td>
<td>5°-45°</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>3K</td>
<td>5°-45°</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1.5K</td>
<td>5°-45°</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>-1.5K</td>
<td>60°-90°</td>
<td>yes</td>
</tr>
</tbody>
</table>
Future Work

What are the underlying physical processes that dictate the behavior of the STJ and HC?

MODEL: Aquaplanet Simulations
- Warming of various widths
- Polar cooling
- Disable eddy parameterizations

<table>
<thead>
<tr>
<th>Run</th>
<th>(\Delta T_s)</th>
<th>(\Delta \phi_T)</th>
<th>Eddy permitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5K</td>
<td>5°-45°</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>3K</td>
<td>5°-45°</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1.5K</td>
<td>5°-45°</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>-1.5K</td>
<td>60°-90°</td>
<td>yes</td>
</tr>
</tbody>
</table>

\[\phi = 10° \]

\[\phi = 30° \]
Future Work

What are the underlying physical processes that dictate the behavior of the STJ and HC?

MODEL: Aquaplanet Simulations
- Warming of various widths
- Polar cooling
- Disable eddy parameterizations

ANALYSIS:
Momentum Budget
- Role of eddy momentum fluxes
Future Work

What are the underlying physical processes that dictate the behavior of the STJ and HC?

MODEL: Aquaplanet Simulations
- Warming of various widths
- Polar cooling
- Disable eddys

ANALYSIS: Momentum Budget
- Role of eddy momentum fluxes

Questions?